
For these Global Editions, the editorial team at Pearson has
collaborated with educators across the world to address a
wide range of subjects and requirements, equipping students
with the best possible learning tools. This Global Edition
preserves the cutting-edge approach and pedagogy of the
original, but also features alterations, customization, and
adaptation from the North American version.

C
om

puter System
s

 A Program
m

er’s Perspective
B

ryant • O
’H

allaron
T

H
ir

d

E
d

iT
iO

N

GlOBAl
EdiTiON

This is a special edition of an established
title widely used by colleges and universities
throughout the world. Pearson published this
exclusive edition for the benefit of students
outside the United States and Canada. if you
purchased this book within the United States
or Canada, you should be aware that it has
been imported without the approval of the
Publisher or Author.

Pearson Global Edition

GlOBAl
EdiTiON

Computer Systems
 A Programmer’s Perspective

 THird EdiTiON

Randal E. Bryant • David R. O’Hallaron
G

lO
B

A
l

Ed
iT

iO
N

Bryant_1292101768_mech.indd 1 07/05/15 3:22 PM

Computer Systems
A Programmer’s Perspective

This page is intentionally left blank.

Computer Systems
A Programmer’s Perspective

third edition
global edition

Randal E. Bryant
Carnegie Mellon University

David R. O’Hallaron
Carnegie Mellon University

Global Edition contributions by

Manasa S.
NMAM Institute of Technology

Mohit Tahiliani
National Institute of Technology Karnataka

Boston Columbus Hoboken Indianapolis New York San Francisco

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Vice President and Editorial Director: Marcia J. Horton
Executive Editor: Matt Goldstein
Editorial Assistant: Kelsey Loanes
Acquisitions Editor, Global Editions: Karthik Subramanian
VP of Marketing: Christy Lesko
Director of Field Marketing: Tim Galligan
Product Marketing Manager: Bram van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Director of Product Management: Erin Gregg
Team Lead Product Management: Scott Disanno
Program Manager: Joanne Manning
Project Editor, Global Editions: K.K. Neelakantan

Senior Production Manufacturing Controller,
Global Editions: Trudy Kimber

Procurement Manager: Mary Fischer
Senior Specialist, Program Planning and Support:

Maura Zaldivar-Garcia
Media Production Manager, Global Editions:

Vikram Kumar
Cover Designer: Lumina Datamatics
Manager, Rights Management: Rachel Youdelman
Associate Project Manager, Rights Management:

William J. Opaluch
Full-Service Project Management: Paul Anagnostopoulos,

Windfall Software

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2016

The rights of Randal E. Bryant and David R. O’Hallaron to be identified as the authors of this work have been asserted by
them in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Computer Systems: A Programmer’s Perspective, 3rd edition,
ISBN 978-0-13-409266-9, by Randal E. Bryant and David R. O’Hallaron published by Pearson Education © 2016.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of
the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd,
Saffron House, 6-10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in
the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any
affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1

ISBN 10: 1-292-10176-8

ISBN 13: 978-1-292-10176-7 (Print)

Typeset in 10/12 Times Ten, ITC Stone Sans by Windfall Software

Printed in Malaysia

ISBN 13: 978-1-488-67207-1 (PDF)

To the students and instructors of the 15-213

course at Carnegie Mellon University, for inspiring

us to develop and refine the material for this book.

MasteringEngineering®

For Computer Systems: A Programmer’s Perspective, Third Edition

Mastering is Pearson’s proven online Tutorial Homework program, newly available with the third
edition of Computer Systems: A Programmer’s Perspective. The Mastering platform allows you to
integrate dynamic homework—with many problems taken directly from the Bryant/O’Hallaron
textbook—with automatic grading. Mastering allows you to easily track the performance of your
entire class on an assignment-by-assignment basis, or view the detailed work of an individual
student.

For more information or a demonstration of the course, visit www.MasteringEngineering.com

Contents

Preface 19

About the Authors 35

1
A Tour of Computer Systems 37
1.1 Information Is Bits + Context 39
1.2 Programs Are Translated by Other Programs into Different Forms 40
1.3 It Pays to Understand How Compilation Systems Work 42
1.4 Processors Read and Interpret Instructions Stored in Memory 43

1.4.1 Hardware Organization of a System 44
1.4.2 Running the hello Program 46

1.5 Caches Matter 47
1.6 Storage Devices Form a Hierarchy 50
1.7 The Operating System Manages the Hardware 50

1.7.1 Processes 51
1.7.2 Threads 53
1.7.3 Virtual Memory 54
1.7.4 Files 55

1.8 Systems Communicate with Other Systems Using Networks 55
1.9 Important Themes 58

1.9.1 Amdahl’s Law 58
1.9.2 Concurrency and Parallelism 60
1.9.3 The Importance of Abstractions in Computer Systems 62

1.10 Summary 63
Bibliographic Notes 64
Solutions to Practice Problems 64

Part I Program Structure and Execution

2
Representing and Manipulating Information 67
2.1 Information Storage 70

2.1.1 Hexadecimal Notation 72
2.1.2 Data Sizes 75

7

8 Contents

2.1.3 Addressing and Byte Ordering 78
2.1.4 Representing Strings 85
2.1.5 Representing Code 85
2.1.6 Introduction to Boolean Algebra 86
2.1.7 Bit-Level Operations in C 90
2.1.8 Logical Operations in C 92
2.1.9 Shift Operations in C 93

2.2 Integer Representations 95
2.2.1 Integral Data Types 96
2.2.2 Unsigned Encodings 98
2.2.3 Two’s-Complement Encodings 100
2.2.4 Conversions between Signed and Unsigned 106
2.2.5 Signed versus Unsigned in C 110
2.2.6 Expanding the Bit Representation of a Number 112
2.2.7 Truncating Numbers 117
2.2.8 Advice on Signed versus Unsigned 119

2.3 Integer Arithmetic 120
2.3.1 Unsigned Addition 120
2.3.2 Two’s-Complement Addition 126
2.3.3 Two’s-Complement Negation 131
2.3.4 Unsigned Multiplication 132
2.3.5 Two’s-Complement Multiplication 133
2.3.6 Multiplying by Constants 137
2.3.7 Dividing by Powers of 2 139
2.3.8 Final Thoughts on Integer Arithmetic 143

2.4 Floating Point 144
2.4.1 Fractional Binary Numbers 145
2.4.2 IEEE Floating-Point Representation 148
2.4.3 Example Numbers 151
2.4.4 Rounding 156
2.4.5 Floating-Point Operations 158
2.4.6 Floating Point in C 160

2.5 Summary 162
Bibliographic Notes 163
Homework Problems 164
Solutions to Practice Problems 179

3
Machine-Level Representation of Programs 199
3.1 A Historical Perspective 202

Contents 9

3.2 Program Encodings 205
3.2.1 Machine-Level Code 206
3.2.2 Code Examples 208
3.2.3 Notes on Formatting 211

3.3 Data Formats 213

3.4 Accessing Information 215
3.4.1 Operand Specifiers 216
3.4.2 Data Movement Instructions 218
3.4.3 Data Movement Example 222
3.4.4 Pushing and Popping Stack Data 225

3.5 Arithmetic and Logical Operations 227
3.5.1 Load Effective Address 227
3.5.2 Unary and Binary Operations 230
3.5.3 Shift Operations 230
3.5.4 Discussion 232
3.5.5 Special Arithmetic Operations 233

3.6 Control 236
3.6.1 Condition Codes 237
3.6.2 Accessing the Condition Codes 238
3.6.3 Jump Instructions 241
3.6.4 Jump Instruction Encodings 243
3.6.5 Implementing Conditional Branches with

Conditional Control 245
3.6.6 Implementing Conditional Branches with

Conditional Moves 250
3.6.7 Loops 256
3.6.8 Switch Statements 268

3.7 Procedures 274
3.7.1 The Run-Time Stack 275
3.7.2 Control Transfer 277
3.7.3 Data Transfer 281
3.7.4 Local Storage on the Stack 284
3.7.5 Local Storage in Registers 287
3.7.6 Recursive Procedures 289

3.8 Array Allocation and Access 291
3.8.1 Basic Principles 291
3.8.2 Pointer Arithmetic 293
3.8.3 Nested Arrays 294
3.8.4 Fixed-Size Arrays 296
3.8.5 Variable-Size Arrays 298

10 Contents

3.9 Heterogeneous Data Structures 301
3.9.1 Structures 301
3.9.2 Unions 305
3.9.3 Data Alignment 309

3.10 Combining Control and Data in Machine-Level Programs 312
3.10.1 Understanding Pointers 313
3.10.2 Life in the Real World: Using the gdb Debugger 315
3.10.3 Out-of-Bounds Memory References and Buffer Overflow 315
3.10.4 Thwarting Buffer Overflow Attacks 320
3.10.5 Supporting Variable-Size Stack Frames 326

3.11 Floating-Point Code 329
3.11.1 Floating-Point Movement and Conversion Operations 332
3.11.2 Floating-Point Code in Procedures 337
3.11.3 Floating-Point Arithmetic Operations 338
3.11.4 Defining and Using Floating-Point Constants 340
3.11.5 Using Bitwise Operations in Floating-Point Code 341
3.11.6 Floating-Point Comparison Operations 342
3.11.7 Observations about Floating-Point Code 345

3.12 Summary 345
Bibliographic Notes 346
Homework Problems 347
Solutions to Practice Problems 361

4
Processor Architecture 387
4.1 The Y86-64 Instruction Set Architecture 391

4.1.1 Programmer-Visible State 391
4.1.2 Y86-64 Instructions 392
4.1.3 Instruction Encoding 394
4.1.4 Y86-64 Exceptions 399
4.1.5 Y86-64 Programs 400
4.1.6 Some Y86-64 Instruction Details 406

4.2 Logic Design and the Hardware Control Language HCL 408
4.2.1 Logic Gates 409
4.2.2 Combinational Circuits and HCL Boolean Expressions 410
4.2.3 Word-Level Combinational Circuits and HCL

Integer Expressions 412
4.2.4 Set Membership 416
4.2.5 Memory and Clocking 417

4.3 Sequential Y86-64 Implementations 420
4.3.1 Organizing Processing into Stages 420

Contents 11

4.3.2 SEQ Hardware Structure 432
4.3.3 SEQ Timing 436
4.3.4 SEQ Stage Implementations 440

4.4 General Principles of Pipelining 448
4.4.1 Computational Pipelines 448
4.4.2 A Detailed Look at Pipeline Operation 450
4.4.3 Limitations of Pipelining 452
4.4.4 Pipelining a System with Feedback 455

4.5 Pipelined Y86-64 Implementations 457
4.5.1 SEQ+: Rearranging the Computation Stages 457
4.5.2 Inserting Pipeline Registers 458
4.5.3 Rearranging and Relabeling Signals 462
4.5.4 Next PC Prediction 463
4.5.5 Pipeline Hazards 465
4.5.6 Exception Handling 480
4.5.7 PIPE Stage Implementations 483
4.5.8 Pipeline Control Logic 491
4.5.9 Performance Analysis 500
4.5.10 Unfinished Business 504

4.6 Summary 506
4.6.1 Y86-64 Simulators 508
Bibliographic Notes 509
Homework Problems 509
Solutions to Practice Problems 516

5
Optimizing Program Performance 531
5.1 Capabilities and Limitations of Optimizing Compilers 534
5.2 Expressing Program Performance 538
5.3 Program Example 540
5.4 Eliminating Loop Inefficiencies 544
5.5 Reducing Procedure Calls 548
5.6 Eliminating Unneeded Memory References 550
5.7 Understanding Modern Processors 553

5.7.1 Overall Operation 554
5.7.2 Functional Unit Performance 559
5.7.3 An Abstract Model of Processor Operation 561

5.8 Loop Unrolling 567
5.9 Enhancing Parallelism 572

5.9.1 Multiple Accumulators 572
5.9.2 Reassociation Transformation 577

12 Contents

5.10 Summary of Results for Optimizing Combining Code 583
5.11 Some Limiting Factors 584

5.11.1 Register Spilling 584
5.11.2 Branch Prediction and Misprediction Penalties 585

5.12 Understanding Memory Performance 589
5.12.1 Load Performance 590
5.12.2 Store Performance 591

5.13 Life in the Real World: Performance Improvement Techniques 597
5.14 Identifying and Eliminating Performance Bottlenecks 598

5.14.1 Program Profiling 598
5.14.2 Using a Profiler to Guide Optimization 601

5.15 Summary 604
Bibliographic Notes 605
Homework Problems 606
Solutions to Practice Problems 609

6
The Memory Hierarchy 615
6.1 Storage Technologies 617

6.1.1 Random Access Memory 617
6.1.2 Disk Storage 625
6.1.3 Solid State Disks 636
6.1.4 Storage Technology Trends 638

6.2 Locality 640
6.2.1 Locality of References to Program Data 642
6.2.2 Locality of Instruction Fetches 643
6.2.3 Summary of Locality 644

6.3 The Memory Hierarchy 645
6.3.1 Caching in the Memory Hierarchy 646
6.3.2 Summary of Memory Hierarchy Concepts 650

6.4 Cache Memories 650
6.4.1 Generic Cache Memory Organization 651
6.4.2 Direct-Mapped Caches 653
6.4.3 Set Associative Caches 660
6.4.4 Fully Associative Caches 662
6.4.5 Issues with Writes 666
6.4.6 Anatomy of a Real Cache Hierarchy 667
6.4.7 Performance Impact of Cache Parameters 667

6.5 Writing Cache-Friendly Code 669
6.6 Putting It Together: The Impact of Caches on Program Performance 675

Contents 13

6.6.1 The Memory Mountain 675
6.6.2 Rearranging Loops to Increase Spatial Locality 679
6.6.3 Exploiting Locality in Your Programs 683

6.7 Summary 684
Bibliographic Notes 684
Homework Problems 685
Solutions to Practice Problems 696

Part II Running Programs on a System

7
Linking 705
7.1 Compiler Drivers 707
7.2 Static Linking 708
7.3 Object Files 709
7.4 Relocatable Object Files 710
7.5 Symbols and Symbol Tables 711
7.6 Symbol Resolution 715

7.6.1 How Linkers Resolve Duplicate Symbol Names 716
7.6.2 Linking with Static Libraries 720
7.6.3 How Linkers Use Static Libraries to Resolve References 724

7.7 Relocation 725
7.7.1 Relocation Entries 726
7.7.2 Relocating Symbol References 727

7.8 Executable Object Files 731
7.9 Loading Executable Object Files 733
7.10 Dynamic Linking with Shared Libraries 734
7.11 Loading and Linking Shared Libraries from Applications 737
7.12 Position-Independent Code (PIC) 740
7.13 Library Interpositioning 743

7.13.1 Compile-Time Interpositioning 744
7.13.2 Link-Time Interpositioning 744
7.13.3 Run-Time Interpositioning 746

7.14 Tools for Manipulating Object Files 749
7.15 Summary 749

Bibliographic Notes 750
Homework Problems 750
Solutions to Practice Problems 753

14 Contents

8
Exceptional Control Flow 757
8.1 Exceptions 759

8.1.1 Exception Handling 760
8.1.2 Classes of Exceptions 762
8.1.3 Exceptions in Linux/x86-64 Systems 765

8.2 Processes 768
8.2.1 Logical Control Flow 768
8.2.2 Concurrent Flows 769
8.2.3 Private Address Space 770
8.2.4 User and Kernel Modes 770
8.2.5 Context Switches 772

8.3 System Call Error Handling 773
8.4 Process Control 774

8.4.1 Obtaining Process IDs 775
8.4.2 Creating and Terminating Processes 775
8.4.3 Reaping Child Processes 779
8.4.4 Putting Processes to Sleep 785
8.4.5 Loading and Running Programs 786
8.4.6 Using fork and execve to Run Programs 789

8.5 Signals 792
8.5.1 Signal Terminology 794
8.5.2 Sending Signals 795
8.5.3 Receiving Signals 798
8.5.4 Blocking and Unblocking Signals 800
8.5.5 Writing Signal Handlers 802
8.5.6 Synchronizing Flows to Avoid Nasty Concurrency Bugs 812
8.5.7 Explicitly Waiting for Signals 814

8.6 Nonlocal Jumps 817
8.7 Tools for Manipulating Processes 822
8.8 Summary 823

Bibliographic Notes 823
Homework Problems 824
Solutions to Practice Problems 831

9
Virtual Memory 837
9.1 Physical and Virtual Addressing 839
9.2 Address Spaces 840

Contents 15

9.3 VM as a Tool for Caching 841
9.3.1 DRAM Cache Organization 842
9.3.2 Page Tables 842
9.3.3 Page Hits 844
9.3.4 Page Faults 844
9.3.5 Allocating Pages 846
9.3.6 Locality to the Rescue Again 846

9.4 VM as a Tool for Memory Management 847

9.5 VM as a Tool for Memory Protection 848

9.6 Address Translation 849
9.6.1 Integrating Caches and VM 853
9.6.2 Speeding Up Address Translation with a TLB 853
9.6.3 Multi-Level Page Tables 855
9.6.4 Putting It Together: End-to-End Address Translation 857

9.7 Case Study: The Intel Core i7/Linux Memory System 861
9.7.1 Core i7 Address Translation 862
9.7.2 Linux Virtual Memory System 864

9.8 Memory Mapping 869
9.8.1 Shared Objects Revisited 869
9.8.2 The fork Function Revisited 872
9.8.3 The execve Function Revisited 872
9.8.4 User-Level Memory Mapping with the mmap Function 873

9.9 Dynamic Memory Allocation 875
9.9.1 The malloc and free Functions 876
9.9.2 Why Dynamic Memory Allocation? 879
9.9.3 Allocator Requirements and Goals 880
9.9.4 Fragmentation 882
9.9.5 Implementation Issues 882
9.9.6 Implicit Free Lists 883
9.9.7 Placing Allocated Blocks 885
9.9.8 Splitting Free Blocks 885
9.9.9 Getting Additional Heap Memory 886
9.9.10 Coalescing Free Blocks 886
9.9.11 Coalescing with Boundary Tags 887
9.9.12 Putting It Together: Implementing a Simple Allocator 890
9.9.13 Explicit Free Lists 898
9.9.14 Segregated Free Lists 899

9.10 Garbage Collection 901
9.10.1 Garbage Collector Basics 902
9.10.2 Mark&Sweep Garbage Collectors 903
9.10.3 Conservative Mark&Sweep for C Programs 905

16 Contents

9.11 Common Memory-Related Bugs in C Programs 906
9.11.1 Dereferencing Bad Pointers 906
9.11.2 Reading Uninitialized Memory 907
9.11.3 Allowing Stack Buffer Overflows 907
9.11.4 Assuming That Pointers and the Objects They Point to

Are the Same Size 908
9.11.5 Making Off-by-One Errors 908
9.11.6 Referencing a Pointer Instead of the Object It Points To 909
9.11.7 Misunderstanding Pointer Arithmetic 909
9.11.8 Referencing Nonexistent Variables 910
9.11.9 Referencing Data in Free Heap Blocks 910
9.11.10 Introducing Memory Leaks 911

9.12 Summary 911
Bibliographic Notes 912
Homework Problems 912
Solutions to Practice Problems 916

Part III Interaction and Communication
between Programs

10
System-Level I/O 925
10.1 Unix I/O 926
10.2 Files 927
10.3 Opening and Closing Files 929
10.4 Reading and Writing Files 931
10.5 Robust Reading and Writing with the Rio Package 933

10.5.1 Rio Unbuffered Input and Output Functions 933
10.5.2 Rio Buffered Input Functions 934

10.6 Reading File Metadata 939
10.7 Reading Directory Contents 941
10.8 Sharing Files 942
10.9 I/O Redirection 945
10.10 Standard I/O 947
10.11 Putting It Together: Which I/O Functions Should I Use? 947
10.12 Summary 949

Bibliographic Notes 950
Homework Problems 950
Solutions to Practice Problems 951

Contents 17

11
Network Programming 953
11.1 The Client-Server Programming Model 954
11.2 Networks 955
11.3 The Global IP Internet 960

11.3.1 IP Addresses 961
11.3.2 Internet Domain Names 963
11.3.3 Internet Connections 965

11.4 The Sockets Interface 968
11.4.1 Socket Address Structures 969
11.4.2 The socket Function 970
11.4.3 The connect Function 970
11.4.4 The bind Function 971
11.4.5 The listen Function 971
11.4.6 The accept Function 972
11.4.7 Host and Service Conversion 973
11.4.8 Helper Functions for the Sockets Interface 978
11.4.9 Example Echo Client and Server 980

11.5 Web Servers 984
11.5.1 Web Basics 984
11.5.2 Web Content 985
11.5.3 HTTP Transactions 986
11.5.4 Serving Dynamic Content 989

11.6 Putting It Together: The Tiny Web Server 992
11.7 Summary 1000

Bibliographic Notes 1001
Homework Problems 1001
Solutions to Practice Problems 1002

12
Concurrent Programming 1007
12.1 Concurrent Programming with Processes 1009

12.1.1 A Concurrent Server Based on Processes 1010
12.1.2 Pros and Cons of Processes 1011

12.2 Concurrent Programming with I/O Multiplexing 1013
12.2.1 A Concurrent Event-Driven Server Based on I/O

Multiplexing 1016
12.2.2 Pros and Cons of I/O Multiplexing 1021

12.3 Concurrent Programming with Threads 1021
12.3.1 Thread Execution Model 1022

18 Contents

12.3.2 Posix Threads 1023
12.3.3 Creating Threads 1024
12.3.4 Terminating Threads 1024
12.3.5 Reaping Terminated Threads 1025
12.3.6 Detaching Threads 1025
12.3.7 Initializing Threads 1026
12.3.8 A Concurrent Server Based on Threads 1027

12.4 Shared Variables in Threaded Programs 1028
12.4.1 Threads Memory Model 1029
12.4.2 Mapping Variables to Memory 1030
12.4.3 Shared Variables 1031

12.5 Synchronizing Threads with Semaphores 1031
12.5.1 Progress Graphs 1035
12.5.2 Semaphores 1037
12.5.3 Using Semaphores for Mutual Exclusion 1038
12.5.4 Using Semaphores to Schedule Shared Resources 1040
12.5.5 Putting It Together: A Concurrent Server Based on

Prethreading 1044
12.6 Using Threads for Parallelism 1049
12.7 Other Concurrency Issues 1056

12.7.1 Thread Safety 1056
12.7.2 Reentrancy 1059
12.7.3 Using Existing Library Functions in Threaded Programs 1060
12.7.4 Races 1061
12.7.5 Deadlocks 1063

12.8 Summary 1066
Bibliographic Notes 1066
Homework Problems 1067
Solutions to Practice Problems 1072

A
Error Handling 1077
A.1 Error Handling in Unix Systems 1078
A.2 Error-Handling Wrappers 1079

References 1083

Index 1089

Preface

This book (known as CS:APP) is for computer scientists, computer engineers, and
others who want to be able to write better programs by learning what is going on
“under the hood” of a computer system.

Our aim is to explain the enduring concepts underlying all computer systems,
and to show you the concrete ways that these ideas affect the correctness, perfor-
mance, and utility of your application programs. Many systems books are written
from a builder’s perspective, describing how to implement the hardware or the sys-
tems software, including the operating system, compiler, and network interface.
This book is written from a programmer’s perspective, describing how application
programmers can use their knowledge of a system to write better programs. Of
course, learning what a system is supposed to do provides a good first step in learn-
ing how to build one, so this book also serves as a valuable introduction to those
who go on to implement systems hardware and software. Most systems books also
tend to focus on just one aspect of the system, for example, the hardware archi-
tecture, the operating system, the compiler, or the network. This book spans all
of these aspects, with the unifying theme of a programmer’s perspective.

If you study and learn the concepts in this book, you will be on your way to
becoming the rare power programmer who knows how things work and how to
fix them when they break. You will be able to write programs that make better
use of the capabilities provided by the operating system and systems software,
that operate correctly across a wide range of operating conditions and run-time
parameters, that run faster, and that avoid the flaws that make programs vulner-
able to cyberattack. You will be prepared to delve deeper into advanced topics
such as compilers, computer architecture, operating systems, embedded systems,
networking, and cybersecurity.

Assumptions about the Reader’s Background

This book focuses on systems that execute x86-64 machine code. x86-64 is the latest
in an evolutionary path followed by Intel and its competitors that started with the
8086 microprocessor in 1978. Due to the naming conventions used by Intel for
its microprocessor line, this class of microprocessors is referred to colloquially as
“x86.” As semiconductor technology has evolved to allow more transistors to be
integrated onto a single chip, these processors have progressed greatly in their
computing power and their memory capacity. As part of this progression, they
have gone from operating on 16-bit words, to 32-bit words with the introduction
of IA32 processors, and most recently to 64-bit words with x86-64.

We consider how these machines execute C programs on Linux. Linux is one
of a number of operating systems having their heritage in the Unix operating
system developed originally by Bell Laboratories. Other members of this class

19

20 Preface

New to C? Advice on the C programming language

To help readers whose background in C programming is weak (or nonexistent), we have also included
these special notes to highlight features that are especially important in C. We assume you are familiar
with C++ or Java.

of operating systems include Solaris, FreeBSD, and MacOS X. In recent years,
these operating systems have maintained a high level of compatibility through the
efforts of the Posix and Standard Unix Specification standardization efforts. Thus,
the material in this book applies almost directly to these “Unix-like” operating
systems.

The text contains numerous programming examples that have been compiled
and run on Linux systems. We assume that you have access to such a machine, and
are able to log in and do simple things such as listing files and changing directo-
ries. If your computer runs Microsoft Windows, we recommend that you install
one of the many different virtual machine environments (such as VirtualBox or
VMWare) that allow programs written for one operating system (the guest OS)
to run under another (the host OS).

We also assume that you have some familiarity with C or C++. If your only
prior experience is with Java, the transition will require more effort on your part,
but we will help you. Java and C share similar syntax and control statements.
However, there are aspects of C (particularly pointers, explicit dynamic memory
allocation, and formatted I/O) that do not exist in Java. Fortunately, C is a small
language, and it is clearly and beautifully described in the classic “K&R” text
by Brian Kernighan and Dennis Ritchie [61]. Regardless of your programming
background, consider K&R an essential part of your personal systems library. If
your prior experience is with an interpreted language, such as Python, Ruby, or
Perl, you will definitely want to devote some time to learning C before you attempt
to use this book.

Several of the early chapters in the book explore the interactions between C
programs and their machine-language counterparts. The machine-language exam-
ples were all generated by the GNU gcc compiler running on x86-64 processors.
We do not assume any prior experience with hardware, machine language, or
assembly-language programming.

How to Read the Book

Learning how computer systems work from a programmer’s perspective is great
fun, mainly because you can do it actively. Whenever you learn something new,
you can try it out right away and see the result firsthand. In fact, we believe that
the only way to learn systems is to do systems, either working concrete problems
or writing and running programs on real systems.

This theme pervades the entire book. When a new concept is introduced, it
is followed in the text by one or more practice problems that you should work

Preface 21

code/intro/hello.c

1 #include <stdio.h>

2

3 int main()

4 {

5 printf("hello, world\n");

6 return 0;

7 }

code/intro/hello.c

Figure 1 A typical code example.

immediately to test your understanding. Solutions to the practice problems are
at the end of each chapter. As you read, try to solve each problem on your own
and then check the solution to make sure you are on the right track. Each chapter
is followed by a set of homework problems of varying difficulty. Your instructor
has the solutions to the homework problems in an instructor’s manual. For each
homework problem, we show a rating of the amount of effort we feel it will require:

◆ Should require just a few minutes. Little or no programming required.

◆◆ Might require up to 20 minutes. Often involves writing and testing some
code. (Many of these are derived from problems we have given on exams.)

◆◆◆ Requires a significant effort, perhaps 1–2 hours. Generally involves writ-
ing and testing a significant amount of code.

◆◆◆◆ A lab assignment, requiring up to 10 hours of effort.

Each code example in the text was formatted directly, without any manual
intervention, from a C program compiled with gcc and tested on a Linux system.
Of course, your system may have a different version of gcc, or a different compiler
altogether, so your compiler might generate different machine code; but the
overall behavior should be the same. All of the source code is available from the
CS:APP Web page (“CS:APP” being our shorthand for the book’s title) at csapp
.cs.cmu.edu. In the text, the filenames of the source programs are documented
in horizontal bars that surround the formatted code. For example, the program in
Figure 1 can be found in the file hello.c in directory code/intro/. We encourage
you to try running the example programs on your system as you encounter them.

To avoid having a book that is overwhelming, both in bulk and in content, we
have created a number of Web asides containing material that supplements the
main presentation of the book. These asides are referenced within the book with
a notation of the form chap:top, where chap is a short encoding of the chapter sub-
ject, and top is a short code for the topic that is covered. For example, Web Aside
data:bool contains supplementary material on Boolean algebra for the presenta-
tion on data representations in Chapter 2, while Web Aside arch:vlog contains

22 Preface

material describing processor designs using the Verilog hardware description lan-
guage, supplementing the presentation of processor design in Chapter 4. All of
these Web asides are available from the CS:APP Web page.

Book Overview

The CS:APP book consists of 12 chapters designed to capture the core ideas in
computer systems. Here is an overview.

Chapter 1: A Tour of Computer Systems. This chapter introduces the major ideas
and themes in computer systems by tracing the life cycle of a simple “hello,
world” program.

Chapter 2: Representing and Manipulating Information. We cover computer arith-
metic, emphasizing the properties of unsigned and two’s-complement num-
ber representations that affect programmers. We consider how numbers
are represented and therefore what range of values can be encoded for
a given word size. We consider the effect of casting between signed and
unsigned numbers. We cover the mathematical properties of arithmetic op-
erations. Novice programmers are often surprised to learn that the (two’s-
complement) sum or product of two positive numbers can be negative. On
the other hand, two’s-complement arithmetic satisfies many of the algebraic
properties of integer arithmetic, and hence a compiler can safely transform
multiplication by a constant into a sequence of shifts and adds. We use the
bit-level operations of C to demonstrate the principles and applications of
Boolean algebra. We cover the IEEE floating-point format in terms of how
it represents values and the mathematical properties of floating-point oper-
ations.

Having a solid understanding of computer arithmetic is critical to writ-
ing reliable programs. For example, programmers and compilers cannot re-
place the expression (x<y)with (x-y < 0), due to the possibility of overflow.
They cannot even replace it with the expression (-y < -x), due to the asym-
metric range of negative and positive numbers in the two’s-complement
representation. Arithmetic overflow is a common source of programming
errors and security vulnerabilities, yet few other books cover the properties
of computer arithmetic from a programmer’s perspective.

Chapter 3: Machine-Level Representation of Programs. We teach you how to read
the x86-64 machine code generated by a C compiler. We cover the ba-
sic instruction patterns generated for different control constructs, such as
conditionals, loops, and switch statements. We cover the implementation
of procedures, including stack allocation, register usage conventions, and
parameter passing. We cover the way different data structures such as struc-
tures, unions, and arrays are allocated and accessed. We cover the instruc-
tions that implement both integer and floating-point arithmetic. We also
use the machine-level view of programs as a way to understand common
code security vulnerabilities, such as buffer overflow, and steps that the pro-

Preface 23

Aside What is an aside?

You will encounter asides of this form throughout the text. Asides are parenthetical remarks that give
you some additional insight into the current topic. Asides serve a number of purposes. Some are little
history lessons. For example, where did C, Linux, and the Internet come from? Other asides are meant
to clarify ideas that students often find confusing. For example, what is the difference between a cache
line, set, and block? Other asides give real-world examples, such as how a floating-point error crashed
a French rocket or the geometric and operational parameters of a commercial disk drive. Finally, some
asides are just fun stuff. For example, what is a “hoinky”?

grammer, the compiler, and the operating system can take to reduce these
threats. Learning the concepts in this chapter helps you become a better
programmer, because you will understand how programs are represented
on a machine. One certain benefit is that you will develop a thorough and
concrete understanding of pointers.

Chapter 4: Processor Architecture. This chapter covers basic combinational and
sequential logic elements, and then shows how these elements can be com-
bined in a datapath that executes a simplified subset of the x86-64 instruction
set called “Y86-64.” We begin with the design of a single-cycle datapath.
This design is conceptually very simple, but it would not be very fast. We
then introduce pipelining, where the different steps required to process an
instruction are implemented as separate stages. At any given time, each
stage can work on a different instruction. Our five-stage processor pipeline is
much more realistic. The control logic for the processor designs is described
using a simple hardware description language called HCL. Hardware de-
signs written in HCL can be compiled and linked into simulators provided
with the textbook, and they can be used to generate Verilog descriptions
suitable for synthesis into working hardware.

Chapter 5: Optimizing Program Performance. This chapter introduces a number
of techniques for improving code performance, with the idea being that pro-
grammers learn to write their C code in such a way that a compiler can then
generate efficient machine code. We start with transformations that reduce
the work to be done by a program and hence should be standard practice
when writing any program for any machine. We then progress to trans-
formations that enhance the degree of instruction-level parallelism in the
generated machine code, thereby improving their performance on modern
“superscalar” processors. To motivate these transformations, we introduce
a simple operational model of how modern out-of-order processors work,
and show how to measure the potential performance of a program in terms
of the critical paths through a graphical representation of a program. You
will be surprised how much you can speed up a program by simple transfor-
mations of the C code.

24 Preface

Chapter 6: The Memory Hierarchy. The memory system is one of the most visible
parts of a computer system to application programmers. To this point, you
have relied on a conceptual model of the memory system as a linear array
with uniform access times. In practice, a memory system is a hierarchy of
storage devices with different capacities, costs, and access times. We cover
the different types of RAM and ROM memories and the geometry and
organization of magnetic-disk and solid state drives. We describe how these
storage devices are arranged in a hierarchy. We show how this hierarchy is
made possible by locality of reference. We make these ideas concrete by
introducing a unique view of a memory system as a “memory mountain”
with ridges of temporal locality and slopes of spatial locality. Finally, we
show you how to improve the performance of application programs by
improving their temporal and spatial locality.

Chapter 7: Linking. This chapter covers both static and dynamic linking, including
the ideas of relocatable and executable object files, symbol resolution, re-
location, static libraries, shared object libraries, position-independent code,
and library interpositioning. Linking is not covered in most systems texts,
but we cover it for two reasons. First, some of the most confusing errors that
programmers can encounter are related to glitches during linking, especially
for large software packages. Second, the object files produced by linkers are
tied to concepts such as loading, virtual memory, and memory mapping.

Chapter 8: Exceptional Control Flow. In this part of the presentation, we step
beyond the single-program model by introducing the general concept of
exceptional control flow (i.e., changes in control flow that are outside the
normal branches and procedure calls). We cover examples of exceptional
control flow that exist at all levels of the system, from low-level hardware ex-
ceptions and interrupts, to context switches between concurrent processes,
to abrupt changes in control flow caused by the receipt of Linux signals, to
the nonlocal jumps in C that break the stack discipline.

This is the part of the book where we introduce the fundamental idea
of a process, an abstraction of an executing program. You will learn how
processes work and how they can be created and manipulated from appli-
cation programs. We show how application programmers can make use of
multiple processes via Linux system calls. When you finish this chapter, you
will be able to write a simple Linux shell with job control. It is also your first
introduction to the nondeterministic behavior that arises with concurrent
program execution.

Chapter 9: Virtual Memory. Our presentation of the virtual memory system seeks
to give some understanding of how it works and its characteristics. We want
you to know how it is that the different simultaneous processes can each use
an identical range of addresses, sharing some pages but having individual
copies of others. We also cover issues involved in managing and manip-
ulating virtual memory. In particular, we cover the operation of storage
allocators such as the standard-library malloc and free operations. Cov-

Preface 25

ering this material serves several purposes. It reinforces the concept that
the virtual memory space is just an array of bytes that the program can
subdivide into different storage units. It helps you understand the effects
of programs containing memory referencing errors such as storage leaks
and invalid pointer references. Finally, many application programmers write
their own storage allocators optimized toward the needs and characteris-
tics of the application. This chapter, more than any other, demonstrates the
benefit of covering both the hardware and the software aspects of computer
systems in a unified way. Traditional computer architecture and operating
systems texts present only part of the virtual memory story.

Chapter 10: System-Level I/O. We cover the basic concepts of Unix I/O such as
files and descriptors. We describe how files are shared, how I/O redirection
works, and how to access file metadata. We also develop a robust buffered
I/O package that deals correctly with a curious behavior known as short
counts, where the library function reads only part of the input data. We
cover the C standard I/O library and its relationship to Linux I/O, focusing
on limitations of standard I/O that make it unsuitable for network program-
ming. In general, the topics covered in this chapter are building blocks for
the next two chapters on network and concurrent programming.

Chapter 11: Network Programming. Networks are interesting I/O devices to pro-
gram, tying together many of the ideas that we study earlier in the text, such
as processes, signals, byte ordering, memory mapping, and dynamic storage
allocation. Network programs also provide a compelling context for con-
currency, which is the topic of the next chapter. This chapter is a thin slice
through network programming that gets you to the point where you can
write a simple Web server. We cover the client-server model that underlies
all network applications. We present a programmer’s view of the Internet
and show how to write Internet clients and servers using the sockets inter-
face. Finally, we introduce HTTP and develop a simple iterative Web server.

Chapter 12: Concurrent Programming. This chapter introduces concurrent pro-
gramming using Internet server design as the running motivational example.
We compare and contrast the three basic mechanisms for writing concur-
rent programs—processes, I/O multiplexing, and threads—and show how
to use them to build concurrent Internet servers. We cover basic principles
of synchronization using P and V semaphore operations, thread safety and
reentrancy, race conditions, and deadlocks. Writing concurrent code is es-
sential for most server applications. We also describe the use of thread-level
programming to express parallelism in an application program, enabling
faster execution on multi-core processors. Getting all of the cores working
on a single computational problem requires a careful coordination of the
concurrent threads, both for correctness and to achieve high performance.

