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Preface

This book (known as CS:APP) is for computer scientists, computer engineers, and
others who want to be able to write better programs by learning what is going on
“under the hood” of a computer system.

Our aim is to explain the enduring concepts underlying all computer systems,
and to show you the concrete ways that these ideas affect the correctness, perfor-
mance, and utility of your application programs. Many systems books are written
from a builder’s perspective, describing how to implement the hardware or the sys-
tems software, including the operating system, compiler, and network interface.
This book is written from a programmer’s perspective, describing how application
programmers can use their knowledge of a system to write better programs. Of
course, learning what a system is supposed to do provides a good first step in learn-
ing how to build one, so this book also serves as a valuable introduction to those
who go on to implement systems hardware and software. Most systems books also
tend to focus on just one aspect of the system, for example, the hardware archi-
tecture, the operating system, the compiler, or the network. This book spans all
of these aspects, with the unifying theme of a programmer’s perspective.

If you study and learn the concepts in this book, you will be on your way to
becoming the rare power programmer who knows how things work and how to
fix them when they break. You will be able to write programs that make better
use of the capabilities provided by the operating system and systems software,
that operate correctly across a wide range of operating conditions and run-time
parameters, that run faster, and that avoid the flaws that make programs vulner-
able to cyberattack. You will be prepared to delve deeper into advanced topics
such as compilers, computer architecture, operating systems, embedded systems,
networking, and cybersecurity.

Assumptions about the Reader’s Background

This book focuses on systems that execute x86-64 machine code. x86-64 is the latest
in an evolutionary path followed by Intel and its competitors that started with the
8086 microprocessor in 1978. Due to the naming conventions used by Intel for
its microprocessor line, this class of microprocessors is referred to colloquially as
“x86.” As semiconductor technology has evolved to allow more transistors to be
integrated onto a single chip, these processors have progressed greatly in their
computing power and their memory capacity. As part of this progression, they
have gone from operating on 16-bit words, to 32-bit words with the introduction
of IA32 processors, and most recently to 64-bit words with x86-64.

We consider how these machines execute C programs on Linux. Linux is one
of a number of operating systems having their heritage in the Unix operating
system developed originally by Bell Laboratories. Other members of this class

19



20 Preface

New to C? Advice on the C programming language

To help readers whose background in C programming is weak (or nonexistent), we have also included
these special notes to highlight features that are especially important in C. We assume you are familiar
with C++ or Java.

of operating systems include Solaris, FreeBSD, and MacOS X. In recent years,
these operating systems have maintained a high level of compatibility through the
efforts of the Posix and Standard Unix Specification standardization efforts. Thus,
the material in this book applies almost directly to these “Unix-like” operating
systems.

The text contains numerous programming examples that have been compiled
and run on Linux systems. We assume that you have access to such a machine, and
are able to log in and do simple things such as listing files and changing directo-
ries. If your computer runs Microsoft Windows, we recommend that you install
one of the many different virtual machine environments (such as VirtualBox or
VMWare) that allow programs written for one operating system (the guest OS)
to run under another (the host OS).

We also assume that you have some familiarity with C or C++. If your only
prior experience is with Java, the transition will require more effort on your part,
but we will help you. Java and C share similar syntax and control statements.
However, there are aspects of C (particularly pointers, explicit dynamic memory
allocation, and formatted I/O) that do not exist in Java. Fortunately, C is a small
language, and it is clearly and beautifully described in the classic “K&R” text
by Brian Kernighan and Dennis Ritchie [61]. Regardless of your programming
background, consider K&R an essential part of your personal systems library. If
your prior experience is with an interpreted language, such as Python, Ruby, or
Perl, you will definitely want to devote some time to learning C before you attempt
to use this book.

Several of the early chapters in the book explore the interactions between C
programs and their machine-language counterparts. The machine-language exam-
ples were all generated by the GNU gcc compiler running on x86-64 processors.
We do not assume any prior experience with hardware, machine language, or
assembly-language programming.

How to Read the Book

Learning how computer systems work from a programmer’s perspective is great
fun, mainly because you can do it actively. Whenever you learn something new,
you can try it out right away and see the result firsthand. In fact, we believe that
the only way to learn systems is to do systems, either working concrete problems
or writing and running programs on real systems.

This theme pervades the entire book. When a new concept is introduced, it
is followed in the text by one or more practice problems that you should work
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code/intro/hello.c

1 #include <stdio.h>

2

3 int main()

4 {

5 printf("hello, world\n");

6 return 0;

7 }

code/intro/hello.c

Figure 1 A typical code example.

immediately to test your understanding. Solutions to the practice problems are
at the end of each chapter. As you read, try to solve each problem on your own
and then check the solution to make sure you are on the right track. Each chapter
is followed by a set of homework problems of varying difficulty. Your instructor
has the solutions to the homework problems in an instructor’s manual. For each
homework problem, we show a rating of the amount of effort we feel it will require:

◆ Should require just a few minutes. Little or no programming required.

◆◆ Might require up to 20 minutes. Often involves writing and testing some
code. (Many of these are derived from problems we have given on exams.)

◆◆◆ Requires a significant effort, perhaps 1–2 hours. Generally involves writ-
ing and testing a significant amount of code.

◆◆◆◆ A lab assignment, requiring up to 10 hours of effort.

Each code example in the text was formatted directly, without any manual
intervention, from a C program compiled with gcc and tested on a Linux system.
Of course, your system may have a different version of gcc, or a different compiler
altogether, so your compiler might generate different machine code; but the
overall behavior should be the same. All of the source code is available from the
CS:APP Web page (“CS:APP” being our shorthand for the book’s title) at csapp
.cs.cmu.edu. In the text, the filenames of the source programs are documented
in horizontal bars that surround the formatted code. For example, the program in
Figure 1 can be found in the file hello.c in directory code/intro/. We encourage
you to try running the example programs on your system as you encounter them.

To avoid having a book that is overwhelming, both in bulk and in content, we
have created a number of Web asides containing material that supplements the
main presentation of the book. These asides are referenced within the book with
a notation of the form chap:top, where chap is a short encoding of the chapter sub-
ject, and top is a short code for the topic that is covered. For example, Web Aside
data:bool contains supplementary material on Boolean algebra for the presenta-
tion on data representations in Chapter 2, while Web Aside arch:vlog contains
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material describing processor designs using the Verilog hardware description lan-
guage, supplementing the presentation of processor design in Chapter 4. All of
these Web asides are available from the CS:APP Web page.

Book Overview

The CS:APP book consists of 12 chapters designed to capture the core ideas in
computer systems. Here is an overview.

Chapter 1: A Tour of Computer Systems. This chapter introduces the major ideas
and themes in computer systems by tracing the life cycle of a simple “hello,
world” program.

Chapter 2: Representing and Manipulating Information. We cover computer arith-
metic, emphasizing the properties of unsigned and two’s-complement num-
ber representations that affect programmers. We consider how numbers
are represented and therefore what range of values can be encoded for
a given word size. We consider the effect of casting between signed and
unsigned numbers. We cover the mathematical properties of arithmetic op-
erations. Novice programmers are often surprised to learn that the (two’s-
complement) sum or product of two positive numbers can be negative. On
the other hand, two’s-complement arithmetic satisfies many of the algebraic
properties of integer arithmetic, and hence a compiler can safely transform
multiplication by a constant into a sequence of shifts and adds. We use the
bit-level operations of C to demonstrate the principles and applications of
Boolean algebra. We cover the IEEE floating-point format in terms of how
it represents values and the mathematical properties of floating-point oper-
ations.

Having a solid understanding of computer arithmetic is critical to writ-
ing reliable programs. For example, programmers and compilers cannot re-
place the expression (x<y)with (x-y < 0), due to the possibility of overflow.
They cannot even replace it with the expression (-y < -x), due to the asym-
metric range of negative and positive numbers in the two’s-complement
representation. Arithmetic overflow is a common source of programming
errors and security vulnerabilities, yet few other books cover the properties
of computer arithmetic from a programmer’s perspective.

Chapter 3: Machine-Level Representation of Programs. We teach you how to read
the x86-64 machine code generated by a C compiler. We cover the ba-
sic instruction patterns generated for different control constructs, such as
conditionals, loops, and switch statements. We cover the implementation
of procedures, including stack allocation, register usage conventions, and
parameter passing. We cover the way different data structures such as struc-
tures, unions, and arrays are allocated and accessed. We cover the instruc-
tions that implement both integer and floating-point arithmetic. We also
use the machine-level view of programs as a way to understand common
code security vulnerabilities, such as buffer overflow, and steps that the pro-
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Aside What is an aside?

You will encounter asides of this form throughout the text. Asides are parenthetical remarks that give
you some additional insight into the current topic. Asides serve a number of purposes. Some are little
history lessons. For example, where did C, Linux, and the Internet come from? Other asides are meant
to clarify ideas that students often find confusing. For example, what is the difference between a cache
line, set, and block? Other asides give real-world examples, such as how a floating-point error crashed
a French rocket or the geometric and operational parameters of a commercial disk drive. Finally, some
asides are just fun stuff. For example, what is a “hoinky”?

grammer, the compiler, and the operating system can take to reduce these
threats. Learning the concepts in this chapter helps you become a better
programmer, because you will understand how programs are represented
on a machine. One certain benefit is that you will develop a thorough and
concrete understanding of pointers.

Chapter 4: Processor Architecture. This chapter covers basic combinational and
sequential logic elements, and then shows how these elements can be com-
bined in a datapath that executes a simplified subset of the x86-64 instruction
set called “Y86-64.” We begin with the design of a single-cycle datapath.
This design is conceptually very simple, but it would not be very fast. We
then introduce pipelining, where the different steps required to process an
instruction are implemented as separate stages. At any given time, each
stage can work on a different instruction. Our five-stage processor pipeline is
much more realistic. The control logic for the processor designs is described
using a simple hardware description language called HCL. Hardware de-
signs written in HCL can be compiled and linked into simulators provided
with the textbook, and they can be used to generate Verilog descriptions
suitable for synthesis into working hardware.

Chapter 5: Optimizing Program Performance. This chapter introduces a number
of techniques for improving code performance, with the idea being that pro-
grammers learn to write their C code in such a way that a compiler can then
generate efficient machine code. We start with transformations that reduce
the work to be done by a program and hence should be standard practice
when writing any program for any machine. We then progress to trans-
formations that enhance the degree of instruction-level parallelism in the
generated machine code, thereby improving their performance on modern
“superscalar” processors. To motivate these transformations, we introduce
a simple operational model of how modern out-of-order processors work,
and show how to measure the potential performance of a program in terms
of the critical paths through a graphical representation of a program. You
will be surprised how much you can speed up a program by simple transfor-
mations of the C code.
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Chapter 6: The Memory Hierarchy. The memory system is one of the most visible
parts of a computer system to application programmers. To this point, you
have relied on a conceptual model of the memory system as a linear array
with uniform access times. In practice, a memory system is a hierarchy of
storage devices with different capacities, costs, and access times. We cover
the different types of RAM and ROM memories and the geometry and
organization of magnetic-disk and solid state drives. We describe how these
storage devices are arranged in a hierarchy. We show how this hierarchy is
made possible by locality of reference. We make these ideas concrete by
introducing a unique view of a memory system as a “memory mountain”
with ridges of temporal locality and slopes of spatial locality. Finally, we
show you how to improve the performance of application programs by
improving their temporal and spatial locality.

Chapter 7: Linking. This chapter covers both static and dynamic linking, including
the ideas of relocatable and executable object files, symbol resolution, re-
location, static libraries, shared object libraries, position-independent code,
and library interpositioning. Linking is not covered in most systems texts,
but we cover it for two reasons. First, some of the most confusing errors that
programmers can encounter are related to glitches during linking, especially
for large software packages. Second, the object files produced by linkers are
tied to concepts such as loading, virtual memory, and memory mapping.

Chapter 8: Exceptional Control Flow. In this part of the presentation, we step
beyond the single-program model by introducing the general concept of
exceptional control flow (i.e., changes in control flow that are outside the
normal branches and procedure calls). We cover examples of exceptional
control flow that exist at all levels of the system, from low-level hardware ex-
ceptions and interrupts, to context switches between concurrent processes,
to abrupt changes in control flow caused by the receipt of Linux signals, to
the nonlocal jumps in C that break the stack discipline.

This is the part of the book where we introduce the fundamental idea
of a process, an abstraction of an executing program. You will learn how
processes work and how they can be created and manipulated from appli-
cation programs. We show how application programmers can make use of
multiple processes via Linux system calls. When you finish this chapter, you
will be able to write a simple Linux shell with job control. It is also your first
introduction to the nondeterministic behavior that arises with concurrent
program execution.

Chapter 9: Virtual Memory. Our presentation of the virtual memory system seeks
to give some understanding of how it works and its characteristics. We want
you to know how it is that the different simultaneous processes can each use
an identical range of addresses, sharing some pages but having individual
copies of others. We also cover issues involved in managing and manip-
ulating virtual memory. In particular, we cover the operation of storage
allocators such as the standard-library malloc and free operations. Cov-
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ering this material serves several purposes. It reinforces the concept that
the virtual memory space is just an array of bytes that the program can
subdivide into different storage units. It helps you understand the effects
of programs containing memory referencing errors such as storage leaks
and invalid pointer references. Finally, many application programmers write
their own storage allocators optimized toward the needs and characteris-
tics of the application. This chapter, more than any other, demonstrates the
benefit of covering both the hardware and the software aspects of computer
systems in a unified way. Traditional computer architecture and operating
systems texts present only part of the virtual memory story.

Chapter 10: System-Level I/O. We cover the basic concepts of Unix I/O such as
files and descriptors. We describe how files are shared, how I/O redirection
works, and how to access file metadata. We also develop a robust buffered
I/O package that deals correctly with a curious behavior known as short
counts, where the library function reads only part of the input data. We
cover the C standard I/O library and its relationship to Linux I/O, focusing
on limitations of standard I/O that make it unsuitable for network program-
ming. In general, the topics covered in this chapter are building blocks for
the next two chapters on network and concurrent programming.

Chapter 11: Network Programming. Networks are interesting I/O devices to pro-
gram, tying together many of the ideas that we study earlier in the text, such
as processes, signals, byte ordering, memory mapping, and dynamic storage
allocation. Network programs also provide a compelling context for con-
currency, which is the topic of the next chapter. This chapter is a thin slice
through network programming that gets you to the point where you can
write a simple Web server. We cover the client-server model that underlies
all network applications. We present a programmer’s view of the Internet
and show how to write Internet clients and servers using the sockets inter-
face. Finally, we introduce HTTP and develop a simple iterative Web server.

Chapter 12: Concurrent Programming. This chapter introduces concurrent pro-
gramming using Internet server design as the running motivational example.
We compare and contrast the three basic mechanisms for writing concur-
rent programs—processes, I/O multiplexing, and threads—and show how
to use them to build concurrent Internet servers. We cover basic principles
of synchronization using P and V semaphore operations, thread safety and
reentrancy, race conditions, and deadlocks. Writing concurrent code is es-
sential for most server applications. We also describe the use of thread-level
programming to express parallelism in an application program, enabling
faster execution on multi-core processors. Getting all of the cores working
on a single computational problem requires a careful coordination of the
concurrent threads, both for correctness and to achieve high performance.




